main.py 1.3 KB

123456789101112131415161718192021222324252627282930313233343536
  1. # -*- coding: utf-8 -*-
  2. from PIL import Image
  3. import numpy as np
  4. def extract(source, target):
  5. im = Image.open(source).convert('L') # jpg是这里将用于转换的原图
  6. a = np.asarray(im).astype('float') # 将图像以灰度图的方式打开并将数据转为float存入np中.
  7. depth = 5 # (0-100)
  8. grad = np.gradient(a) # 取图像灰度的梯度值
  9. grad_x, grad_y = grad # 分别取横纵图像梯度值
  10. grad_x = grad_x * depth / 100.
  11. grad_y = grad_y * depth / 100.
  12. A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.) # 构造x和y轴梯度的三维归一化单位坐标系
  13. uni_x = grad_x / A
  14. uni_y = grad_y / A
  15. uni_z = 1. / A
  16. vec_el = np.pi / 2.2 # 光源的俯视角度,弧度值
  17. vec_az = np.pi / 4. # 光源的方位角度,弧度值
  18. dx = np.cos(vec_el) * np.cos(vec_az) # 光源对x 轴的影响
  19. dy = np.cos(vec_el) * np.sin(vec_az) # 光源对y 轴的影响
  20. dz = np.sin(vec_el) # 光源对z 轴的影响
  21. b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z) # 光源归一化,(梯度和光源相互作用,将梯度转化为灰度)
  22. b = b.clip(0, 255)
  23. im2 = Image.fromarray(b.astype('uint8')) # 重构图像
  24. im2.save(target) # 保存得到的手绘图片
  25. im2.show() # 展示
  26. if __name__ == '__main__':
  27. extract('baojinz.jpeg', 'baojinz-line.jpeg')