# -*- coding: utf-8 -*- from PIL import Image import numpy as np def extract(source, target): im = Image.open(source).convert('L') # jpg是这里将用于转换的原图 a = np.asarray(im).astype('float') # 将图像以灰度图的方式打开并将数据转为float存入np中. depth = 5 # (0-100) grad = np.gradient(a) # 取图像灰度的梯度值 grad_x, grad_y = grad # 分别取横纵图像梯度值 grad_x = grad_x * depth / 100. grad_y = grad_y * depth / 100. A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.) # 构造x和y轴梯度的三维归一化单位坐标系 uni_x = grad_x / A uni_y = grad_y / A uni_z = 1. / A vec_el = np.pi / 2.2 # 光源的俯视角度,弧度值 vec_az = np.pi / 4. # 光源的方位角度,弧度值 dx = np.cos(vec_el) * np.cos(vec_az) # 光源对x 轴的影响 dy = np.cos(vec_el) * np.sin(vec_az) # 光源对y 轴的影响 dz = np.sin(vec_el) # 光源对z 轴的影响 b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z) # 光源归一化,(梯度和光源相互作用,将梯度转化为灰度) b = b.clip(0, 255) im2 = Image.fromarray(b.astype('uint8')) # 重构图像 im2.save(target) # 保存得到的手绘图片 im2.show() # 展示 if __name__ == '__main__': extract('baojinz.jpeg', 'baojinz-line.jpeg')